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Generalized Hypercube and Hyperbus Structures
for a Computer Network

LAXMI N. BHUYAN , MEMBER, IEEE, AND DHARMA P. AGRAWAL, SENIOR MEMBER, IEEE

Abstract — A general class of hypercube structures is presented
in this paper for interconnecting a network of microcomputers in
parallel and distributed environments. The interconnection is
based on a mixed radix number system and the technique results
in a variety of hypercube structures for a given number of pro-
cessors N, depending on the desired diameter of the network. A
cost optimal realization is obtained through a process of discrete
optimization. The performance of such a structure is compared to
that of other existing hypercube structures such as Boolean n-cube
and nearest neighbor mesh computers.

The same mathematical framework is used in defining a corre-
sponding bus oriented structure which requires only two I/O ports
per processor. These two types of structures are extremely suit-
able for local area computer networks.

Index Terms — Distributed computers, hyperbus structures,
hypercube structures, local area networks, multistage intercon-
nection networks, parallel computers, topological optimization.

I. INTRODUCTION

EVERAL structures have been proposed in the literature

for interconnecting a large network of computers in
parallel and distributed environments [2]-[12]. In this paper,
we present a generalized hypercube structure and reveal
some interesting properties: of hypercubes. An inter-
connection structure in general should have a low number of
links per node (degree of a node), a small internode distance
(diameter), and a large number of alternate paths between a
pair of nodes for fault tolerance. The distarice between any
two nodes is defined as the number of links traversed by a
message, initiated from one node and sent to another via
intermediate nodes. In a network of N nodes, the diameter is
defined as D = maxm{d,-,-ll < i,j < N}, where d; =
distance between nodes i and j along the shortest path. De-
signing a network with a low message traffic density and
good modularity is also desirable.

The Boolean n-cube computer [7] is an interconnection of
N = 2" processors which may be thought of as placed at the
cornéts of an n-dimensional cube with each edge of the cube
havifig two processors. The degree of a node and the diameter
of this type of structure are equal to n = log, N. A loop
structure with additional links is imbedded in this structure,
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Fig. 1. A Boolean n-cube computer with N = 8.

.and for N = 8, this is illustrated in Fig. 1. When the total

number of nodes N equals W”, W and D both being integers,
the nodes can be arranged as a D-dimensional hypercube with
W nodes in each dimension. If a node is connected to its two
nearest néighbors in each dimension, a nearest neighbor
mesh hypercube is obtained. The degree of a node in such a
structure is 2D and the diameter is WD/2 for W > 2 [8].

There is also a loop structure associated with a nearest neigh-
bor mesh as shown in Fig. 2 for a two-dimensional mesh with
9 nodes We can also deduce that a bidirectional single loop
structure [3] is equivalent to a nearest neighbor connection
with dimension D = 1. This structure has a minimum num-
ber of links and a diameter of N/2. Any two nonadjacent
faulty nodes will disconnect the loop. With the addition of an
extra link to the loop structure the diameter is reduced to
0(VN) [4]. On the other hiand, a completely connected struc-
ture has (N — 1) links per node with a distance of one
between any two nodes. Any two nodes remain connected
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Fig. 2. A nearest neighbor mesh with N = 32,

even if all other nodes fail. However, both the high cost of a
large number of links and the multiport requirement of O(N)
limit the size of the network.

In a multicompiter environment, the average internode
distance, message traffic density, and fault tolerance are very
much dependent on the diameter and degree of a node. There
is a tradeoff between the degree of a node and the diameter.
A structure with a low degree of a node has a large diameter
and a structure that has a low diameter usually possesses a
large degree of a node. A single loop structure and a com-
pletely connected structure as described above represent the
two extremes. The (diameter * degree of a node) is therefore
a good criterion to measure the performance of a structure.
The hypercube structures seem to offer a reasonable charac-
teristic. One commonly noted disadvantage of the Boolean
n-cube computer is that the number of I/O ports is log, N.
However, keeping in mind the simple routing, the low di-
ameter, and the large (log, N) number of disjoint paths, this
topology seems extremely suitable for a local computer
network. Moreover, with current advances in technology, the
number of I/O ports per processor up to 1000 has become
quite feasible [13]. Recently, a few structures have been
proposed with better graph theoretic properties [9]-[12].
Their fault tolerance is basically limited by the fixed number
of 1/O ports per node. What we present here is a complete
generalization of the hypercube and some interesting analy-
ses of hypercube structures, where good fault tolerance is
guaranteed. The present study should therefore be viewed in
that context.

This paper presents two new hypercube structures, called
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generalized hypercube (GHC) and generalized hyperbus
(GHB) structures. They possess the following characteristics:

1) The interconnection supports any number of nodes N.
This is in contrast with the existing hypercube structures,
where N = WP for some integer values of W and D.

2) The design is based on the allowable diameter of the
network. If the diameter can be increased, a structure with a
lower degree of a node can be obtained.

3) These structures are highly fault tolerant, they possess
a small average message distance and a low traffic density.

4) The structures presernted here are very general in na-
ture. Single loop, Boolean n-cube, nearest neighbor mesh
hypercube and fully connected systems can be considered as
a part of this generalized structure.

5) The GHB structures have only two links per node, and
hence require only two I/O ports per processor.

The paper is organized as follows. Section II describes a
useful mixed radix number system used in [14],[15], the
topology, the properties, and the routing and broadcasting
algorithms of the GHC structures. Section III analyzes the
GHC structures with respect to a cost parameter defined by
(degree of anode) * (diameter). The section also outlines the
procedure for obtaining an optimal GHC (OGHC) structure.
Section IV considérs the parameters like average distance,
cost, traffic density, and fault tolerance, etc. to compare the
performance of an OGHC to other hypercube structures.
Section V obtains the equivalent m-cube multistage
interconnection networks (MIN’s) of the GHC structures.
Section VI presents the GHB structures and derives the ex-
pressions for internode distances.

II. THE GENERALIZED HYPERCUBE (GHC) STRUCTURE

A. A Mixed Radix Number System

Let N be the total number of processors and be represented -
as a product of m;’s, m; > 1 forl <i=<r.

N=m *m_;* - *m,.

Then, each processor X between 0 to N — 1 can be expressed
as an r-tuple (x,x,_,- - x) for 0 < x; < (m; — 1). Associ-
ated with each x; is a weight w;, such that E,Ll x;w; = X and
w;=Hj-;11m,-= mi_ %k m_,%---xm forall l <is<r.
Hence, w, = 1 always.

Example 1:
Let N=24=4%3x%2,
m =2, m, =3, m; = 4.
w, =1, w, = 2, wy = 6.

Then, X = (3xx1), 0<x, <1, 0<sx,=<2,0sx;<3
for any X in the range 0-23. 0,, = (000), 23, = (321) in this
mixed radix system.

B. Descripti’on of the GHC Structure

Each processor X = (x,X,—;* * " Xir1 X X;=; * * ~ x;) will be
connected to processors (X, X,—; - X+ X{ X;i—1 - - x;) for all
1 <i =< r, where x; takes all integer values between 0 to
(m; — 1) except x; itself. This type of interconnection will be
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called the generalized hypercube (GHC) throughout this pa-
per. In general, the total number of links (L) is greater than
the total number of processors (N) in this GHC topology.

Example 2: For N = 24, any processor can be expressed
in the mixed radix system between (000) and (321). Pro-
cessor (000) is connected to processors (001), (010), (020),
(100), (200), and (300). Processor (001) is connected to
processors (000), (011), (021), (101), (201), and (301) and
so on as shown in Fig. 3. For the sake of clarity, connection
is not completed in the figure for the nodes shown by dotted
lines. Imbedded in this structure is a loop structure arranged
as (000) — (001) — (011) — (021) — (121) = (221) —>
(321) - (311) — (301) — (300) — (310) — (320) —
(220) — (120) — (020) — (010) — (110) — (210) —
(200) — (201) — (211) = (111) = (101) — (100) —
(000) with 4 extra links per node.

The GHC structure consists of r-dimensions with m; num-
ber of nodes in the ith dimension. A node in a particular axis
is connected to all other nodes in the same axis. Accordingly,
we make the following observations. ‘

1) From any particular node X = (x,x,—; * * * X4, X; Xi-y * *
x1), there are (m; — 1) number of links in the ith direction.
Hence, foralli, 1 < i < r, the total number of links per node
or the degree of a node ¢ = 2_, (m; — 1).

2) Each link is connected to two processors. Hence,
the total number of links in GHC structure L = N/2 -

izl(m,' - 1).

3) d,, = distance between any two nodes x and y in terms
of number of hops = Hamming distance between the nodes.
Hamming distance between two nodes differing in their
addresses in the ith coordinate only is unity and the total
Hamming distance is the sum of the number of coordinates in
which the addresses differ.

4) The addresses can differ at maximum in all the r-
coordinates. Thus, the diameter of the structure = r.

C. Routing Procedure

A message is formatted at the source node with source
address, destination address and a few tag bits. The source
and destination addresses are specified in the binary equiva-
lent of the mixed radix numbers. The ith digit of the address
can take a maximum value of (m; — 1), and hence can be
expressed in [ log, m; ] binary bits, where [ x is the smallest
integer greater than or equal to x. As a result, any pro-
cessor 0 <X < N — 1 can be specified completely in
2._, [log, m;] binary bits. At each node, the destination ad-
dress is compared to its own address, contained in a register.
If the addresses match, the node accepts the message. If
they do not, a digit by digit comparison takes place and the
node transmits the message along the direction of the first
differing digit. The process continues until the destination is
reached. However, at each node the message goes through a
certain delay, waiting for the particular link to be free.

Based on the above routing procedure, we can deduce
the following.

1) If two nodes differ in their address by d coordinates
(dimensions), then d is the shortest distance between these
two nodes. A message can start from the source node along
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Fig. 3. A4 * 3 * 2 GHC-structure.

any one of these d coordinates and then follow the above
routing procedure to reach the destination node. These paths,
illustrated in Fig. 4(a), are disjoint and cover a distance d
each. This observation is similar to the characteristics of a
Boolean n-cube computer [16].

2) From any node (x,x,_;** * X;* * * X2 X;), the message can
go to an intermediate neighboring node and travel to the
corresponding neighboring node of the destination (y,y,—; * *
yi***¥2y1). In the previous case, a message could start along
a particular node in the ith coordinate only if the source and
destination addresses differed in their ith coordinate. Note in
Fig. 4(b), that a message can start along any of the nodes
in the ith coordinate for 1 < i < r without depending on
whether or not the source and destination addresses mismatch
in their ith coordinate.- Then the intermediate nodes encoun-
tered on a single path have their ith coordinate fixed at a
particular digit. The paths are therefore disjoint. A suitable
reference to the path generation process is [10]. Hence, there
are £ alternate paths between any two nodes of the GHC
structure where “€” is the degree of a node.

3) For any number of faults less than “€” in the system, the
worst case distance between two connected nodes is r + 1.
This is also clear from Fig. 4(b).

Alternate Routing Procedures: As mentioned above,
there are d disjoint paths of equal length d between any two
nodes separated by Hamming distance d. If the channels in
one path are busy or faulty, a message can be routed in a
different path with the same distance d. This is possible if the
status of every link is updated at each node. In that case, the
source node can route the message along an alternate path
thus saving the delay in transmission. This process requires
additional hardware and software and the path computation
may be time consuming. If the link is busy another simple
method is to route the message along the next digit of the first
differing digit. For example, with N = 24, while routing
from (001) to (221), instead of routing through (021) first, the
message can be routed to (201) and then to (221), if the
previous channel is busy.

D. Broadcasting

Any processor can send a message to all other processors
in just r steps by using the following algorithms.
The structure is an r-dimensional hypercube with (m; — 1)
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Fig. 4. (a)“d” disjoint paths of length “d” each between nodes at Hamming distance “d.” (b) “¢” alternate paths

between any source and destination.

numbers of links in the ith dimension. Each link in the ma-
chine is numbered, with the links in the ith dimension being
numbercd “i” for all 1 < i'<<r. Let us assume node A
©0---0) wnshes to broadcast g message. To do so, it sends
messages with a weight “i” in the links along the ith dimen-
sion. In the second step, all the receiving nodes reduce the
weight by ore and transmit the messages along all those
dimensions whose numbers do not exceed the reduced
weight. The process contmues for r steps until all the nodes
have received the message. It may be noted that r is the lower
bound for the minimum number of steps required for broad-
casting in a graph with a diameter of .

Example 3: The structure for N = 24 is shown in Fig. 3.
In the first step, nodes (001) will receive the message with a
we1ght “1,” nodes (010) and (020) will receive the message
with weight “2,” and nodes (100), (200), (300) will receive the
message with weight “3.” In the next step, all these nodes will
reduce their weights by one-and transmit the messages as
shown below.

(001) — no transmission
(010) and (020) — (011) and (021) respectively with
weight “1”
(100), (200) and (300) — (101), (201) and (301)
respectively with weight “1,” and
(110), (120), (210), (220), (310) and (320) thh
weight “2.”
In the third and final step,
(110) — (111), (120) — (121), (210) — (211),
(220) — (221), (310) — (311), (320) — (321) with
weight “1.”
The complete broadcqstmg is achieved in three steps, as
shown in Fig. 5.

III. ANALYSIS OF GHC STRUCTURES

A. Structure Optimization

When an interconnection of N processors is desired with
the constraint that the maximum distance between any two
nodes along the shortest path or the diameter does not exceed
r, N has to be expressed as a product of r quantities as
N =m, * m._, * - -+ * m;. The number of links per node =

_, (m; — 1). In fact, there are several ways to factor N
into r components. For example, 16 can be factored as 8 * 2
or 4 * 4. An optimized structure with diameter r is ob-
tained when the total number of links in the structure is at
the minimum. i

Legmma 1: When V/N is an integer, a cost optimal GHC
with diameter “r” is obtained if m; = VNforalll <i<r

Proof: Smce the number of links per node “€” is the same
for all the nodes, a minimization of “€” with respect to m;’s
gives the desired result

N
m, = g
mme** " ny
4 N
=2 (m - 1)+<———— 1)
i=2 mm,_,* - m;
ot _ ot _at _
Bm, 6m,-1 amZ )

This results in m, = m,_, - =m, =m = VN.Q.E.D.
Since VN may not be an integer, all m,’s should lie as close
to VN as possible. When N = m’, the mathematics involved
is simply a higher radix system, each x; lying between 0 and
(m—l)foralll<z<r .
There is another aspect of the GHC structures. The number
of links per node is different for different values of diameter
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Fig. 5.

r. Again, for example, 16 can be expressed as 4 * 4, 4 *
2% 2,2 %2 * 2 % 2 with diameters 2, 3, and 4, respectively.
As mentioned earlier, a structure with a lower degree of a
node usually has a higher diameter. If a cost factor ¢ is
defined as the product of the diameter and the links per node,
a discrete optimization of r 2_, (m; — 1) with respect to r
and subject to the constraint that [I_, m; = N and integer
values of m;’s, yields an optimized structure. As an example,
the optimal values of r for processors equal to 2° and 3°, are
plotted in Fig. 6. Because of the discrete optimization in-
volved, it was not possible to derive a closed form solution
for rop.

Conjecture 1: For N, a power of two, an absolute cost
optimal GHC (OGHC) is obtained when r = [ log, N |, where
| x ] is the largest integer smaller than or equal to x.

This deduction follows from Fig. 6. UptoN = 2, r, = 1
indicates a fully connected system. For N = 2% ryy
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results in a two-dimensional GHC with 4 nodes in each di-
mension. For N = 2° there are 4 nodes in one dimension and
8 nodes in the other. For N = 29, ro = 3 and soon. Also, for
N and m powers of two a GHC with m nodes in each dimen-
sion has a cost of (m — 1) logZ N which has a local minimum
atm = 4.

For N, a power of four, the degree of a node of an OGHC
is 31logs N = 1.5 log, N. The diameter is log, N =
0.5 log, N. Hence, the cost = 0.75 (logi N). The cost of
other structures [9]-[12] are proportional to (log, N) instead
of (log3 N). However, they do not possess as good a fault
tolerance as the GHC structures do. For N, a power of 5, the
cost is 0.742 logi N when m = 5. However, only values of
N which are powers of two are considered in conjecture 1 for
later use in Section IV.

B. Internode Distance and Queueing Delay

Distance between any processor X = (X, X,—; * * * Xj41 Xi Xi;
coexpxy) and X' o= (X Xop Xy X, Ximy t t XaXy), X{ €
{0,1,2,-+-,m; — 1} and x] # x;, is unity. In general, the
distance between any two processors is equal to the Hamming
distance between them; that is, in how many coordinates their
addresses differ. The average internode distance plays a
key role in determining the queueing delay in a computer
network. For calculating the number of nodes at different
distances, the node (00 - - - 0) can be assumed to be the source
node without any loss in generality. There are (m; — 1) num-
ber of nodes which differ from the source node only in the ith
dimension. Hence, N, = total number of nodes differing by
distance 1

= 2(’"; = 1).

The nodes which have distance 2 from the source node
must differ in their addresses by two coordinates i and j. In
these two dimensions, (m; — 1) (m; — 1) different combina-
tions can occur. Again, these two dimensions are selected out
of r such dimensions existing in the address space. Hence,
the total number of nodes differing by the shortest distance 2,

Ny=2(m— 1)(m;— 1)

i,je{l,2,--+,r} and i#j.
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There are (5) terms to be added in this summation. The

same ideas can be extended to calculate the number of nodes
differing by a Hamming distance d,

N,= 2 (m; — 1)(m; — 1)(m; — 1)---d such terms

. 8{1,2,"',7‘}
iFjEkE

i,j,k..

and the summation includes (}) such items.

A Boolean n-cube structure can be considered as a special
case of GHC structures, where m; = 2 for 1 <i=<r. As a
result, N = 2" and r = log, N = n.

[Tem —1)=1 and N, = <Z> =‘1!(Tn_!d_)!.

Once the number of nodes at a distance d is known, the
average message distance is d = (2., dN,)/(N — 1).

To get an idea how the average message distance varies, let
us consider the case when N = m’. Also, as mentioned
earlier, m;’s should be as close as possible to VN for an
optimized structure with diameter r, and hence this should
give approximate results for any N that can be factored into
r-components.

When all m;’s are equal to m, the number of nodes at a
distance d, N, = () (m — 1), and

=[S v

-5 R=r-

d(m — 1)
== 0=t S (G) = v =
_ [(m _ 1)%%—1)0" 1+ 1)']/(N -1

m=VN.

Fig. 7 shows the variation of average message distance (d)
with respect to r for a few values of m. When m = 2, it is
simply a Boolean n-cube structure. For an OGHC, d =
0.375 log, N.

The average message traffic density in a link of GHC
structures is defined as

r-m-1- -m'Y/(N-1),

_Average message distance * number of nodes
total number of links
dN 2d

N r r ’
‘2— 2,.:1 (m; — 1) 2i=l (m; — 1)
2d
For N=m", p = ———= = 0.5 for an OGHC structure.
rim — 1)

The GHC structures can be modeled as a communication
net with the ith channel represented as an M/M/1 system
with Poisson arrivals at a rate A; and exponential service time
of mean 1/uc; [17]. u = average service rate and ¢; =

[EEE TRANSACTIONS ON COMPUTERS, VOL. C-33, NO. 4, APRIL 1984

[ Q.
IS

o 1 2 3 4 5 6 7 8 9 10
Y ———

Fig. 7. Average message distance in GHC-structure with N = m".

capacity of the ith channel. Additionally, we assume the
following.

1) Each node is equally likely to send a message to every
other node in a fixed time period.

2) The routing is done as per the fixed routing algorithm
described in Section II.

3) The load is evenly distributed, i.e., A; is the same for
all i.

4) The capacity of each link in the network has been opti-
mally assigned [17].

5) The cost per capacity per link is unity.

Under the above conditions, the delay of GHC structures

is given by [17]
\2
E(Eﬁ ﬁ)

~ pC(1 - dy)
where
M = total number of dirécted links,
A =2, X\, = M), because of assumption 3),
v = the utilization factor, and
C = 2, ¢; = total capacity of the structure.
With N nodes and € bidirectional links per node,

N
M= (7) 2¢.

T wC(l - dy)

Hence,

With constants u, C, and N, the above delay can be normal-
ized as

@
(1—-dy’

The delay increases exponentially with increased utiliza-
tion and saturates at a particular load, given by y,, = 1/d. In
a fully connected system, y,, = 1 since 4 = 1, and hence the
computer network performs very well under heavy load con-

TI
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Fig. 8. Normalized queueing delay in GHC-structures with N = 16.

ditions. In general, the performance of the GHC structures
will lie between a loop structure and a fully connected net.
The average delay in different GHC structures for N = 16
is plotted in Fig. 8. As expected, the optimized structure
with N = 4 * 4, performs well both in light load and heavy
load conditions. Table I presents a summary of some rele-
vant information for different GHC structures with N = 16
and 24.

IV. PERFORMANCE OF GHC STRUCTURES

In this section, the performance of the GHC structures
will be compared to that of other hypercube structures. The
number of nodes N will be assumed to be a power of two and
the GHC considered here is the OGHC as obtained in
Section III. The loop structure is a nearest neighbor mesh in
one dimension, whereas a completely connected structure is
a one-dimensional GHC. The Boolean n-cube computer, al-
though it is a part of the GH and the nearest neighbor mesh,
is a well known topology and will therefore be considered
separately. The nearest neighbor mesh considered here is an
optimal structure as described below.

" Nearest Neighbor Mesh Hypercube Structures: If N can be
expressed as a product of r-terms, a generalized nearest
neighbor mesh hypercube is obtained when a node (x, x,-; - - -

Xis1X;Xi—1 " " *XpX;) is connected to [x,x,—; X4 1(x; + 1)
mod m;x;_y* " x,x;] and [x,x,_; " x;4,(x; — 1) mod m;
Xi—1* - xyx;] forall 1 < i < r. Such a structure for N = 4 *

3 = 2 is shown in Fig. 9. The degree of a node is 2r when all
the factors are greater than two. The diameter of such a
structure is 2/_, | m;/2 |. For a fixed value of N, there can be
several ways to factor N into r components. The degree of a
node being fixed at 2r, an optimal structure is obtained when

-y Lm;/2 ] is minimum. For high values of m;, the floor
function can be neglected. The following lemma results.

Lemma 2: An optimal nearest neighbor mesh with some
fixed r dimensions is obtained when m; = VN.

Again, for a fixed value of N, there can be several ways to
design a nearest neighbor mesh. A discrete optimization of
the product of the degree of a node and the diameter, for
various values of r, will give rise to an optimal design. The
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TABLE I
CHARACTERISTICS OF GHC STRUCTURES
Links Cost Average
Diameter  per Factor Message
N Factors r node £ I3 Distance d Veat
2%2%2%2 4 4 16 2.13 0.47
4%2%2 3 5 15 1.87 0.535
16 4 x4 2 6 12 1.6 0.625
16 1 15 15 1 1
(fully
connected)
3#2%2%2 4 5 20 2.26 0.442
4%3%2 3 6 18 2.0 0.5
24 6 x4 2 8 16 1.65 0.606
24 1 23 23 1 1
(fully
connected)

21

020

11

010 <

01

300
000

Fig. 9. A generalized nearest neighbor mesh hypercube with
N=4%3%2.

r
opt

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 10. 7.y for nearest neighbor mesh hypercube with N = m”®.

values of 7,y for N, powers of 2 and 3 are plotted in Fig. 10.
For N, a power of two, an optimal structure is obtained when
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there are 8 nodes in each dimension, as can be seen from
the computation.

Conjecture 2: For N, a power of two, an optimal nearest
neighbor mesh hypercube is obtained when r = [logg N1.
. Throughout this section, such an optimal structure
(8-cube) will be considered for performance comparison.

Average Message Distance (d):

2(1+2+3+---+N;1>

Loop: d=

N-1
1
=I(N+1) for N odd
N-2 N
+24+3+ -+ +—
_2(1 2 2) 2
N-1
_ 1 NN-2)
=T N-1 for N eyen
=0.25N for any N.

- n n N
1 - : = = —_ . —_—
Boolean n-cube A d 2( )d N 1

= 0.5 log, N.

Nearest neighbor mesh:

With N = W', the maximum distance along each direction
is W/2. The average distance along each dimension is 0.25 W
as in the case of a loop. For r dimensions, d = 0.25 rW.
With an optimal design, W = 8 and d = 0.25 X logg N X
8 = 0.667 log, N.
OGHC: d = 0.375 log, N.
Completely connected: d = 1.
Cost:
The cost of a structure = degree of a node * diameter
Loop: Degree of a node = 2, Diameter = 0.5N.
Hence, cost = N.
Boolean n-cube: Degree of a node = Diameter =
log, N, cost = logi N.
Nearest neighbor mesh: Degree of a node = 2 logg N =
0.667 log, N
Diameter = r + (W/2) =
4 logs N = 1.333 log, N
Cost = 0.889 logZ N.
OGHC: Cost = 0.75 log3 N.
Completely connected: Cost = N — 1.
Average message traffic density:
Average message traffic density p = (d X N)/L
Loop: Number of links L = N; hence p = d = 0.25N
Boolean n-cube: L = 0.5N log, N; p =
d/0.51og, N =1
Nearest neighbor mesh: L = r+ N = 0.334N log, N
p=d/0.334log, N = 2.
OGHC: p = 0.5.
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Fault Tolerance: The fault tolerance of a structure is the
connectivity or the number of node disjoint paths between
any two nodes. The connectivity for a loop is 2; for a Boolean
n-cube, it is log, N; for a nearest neighbor mesh it is 2r [18],
i.e., 0.667 log; N here; for an OGHC it is 1.5 log, N and for
a completely connected structure it is (N — 1).

V. m-CUBE INTERCONNECTION NETWORKS

An N X N multistage interconnection network (MIN)
[19]-[21] is capable of connecting N number of processing
elements (PE’s) to N number of memory modules (MM’s).
Various MIN’s described in the literature [19] employ 2-input
2-output switching elements (SE’s). Here, we illustrate the
use of GHC structures in designing N X N MIN’s imple-
mented with m X m SE’s. We limit our discussions to only
values of N and m which are powers of two.

An m-cube multicomputer is a GHC structure with m num-
ber of nodes in each dimension. When N is a power of m,
there are m nodes in each of r = log, N dimensions of the
hypercube. When N is not a power of m, there will be
r — 1 = | log, N | dimensions with m nodes each and one
dimension with N/,,r — 1 number of nodes. All the nodes in
a dimension are connected to each other by dedicated links.
A completely connected multicomputer corresponds to a
crossbar [22] in a circuit switched multiprocessor. When an
m-cube GHC is unfolded, an m-cube MIN results. By un-
folding we mean that the ith stage of the MIN is connected as
per the ith dimension of the GHC structure for 1 < i < r.
An m-cube MIN will consist of log, N stages of N/m
number of m X m crossbar modules at each stage when N is
a power of m. When N is not a power of m, there will be
[logn N stages of m X m crossbar modules followed by
N/wr — 1 X N/r — 1 crossbar modules at the last stage. This
also results by unfolding an m-cube GHC. The construction. of
a 32 X 32 4-cube MIN is illustrated in Fig. 11. When a
Boolean n-cube structure with m = 2 is unfolded, a gener-
alized cube interconnection network [20] results. Some recent
studies [15], [23], [24] have shown that a 4-cube MIN gives
optimal performance in terms of bandwidth -and cost.

VI. GENERALIZED HYPERBUS (GHB) STRUCTURES

In the preceding section, N specifies the number of
processors in the structure. If, however, it specifies the num-
ber of buses, a different configuration results. Then, each
processor is connected to two adjoining buses, running in
different dimensions of the generalized hypercube. Such a
structure for N = 3 * 2 is shown in Fig. 12. These types of
structures will be referred to as generalized hyperbus (GHB)
structures. The number of processors P in a GHB structure
will be greater than the number of buses N. The distance
between two processors is specified by the number of buses
amessage has to travel from one processor to the other. Since
GHB structures have fewer links than nodes, these structures
will give rise to a high message traffic density in a bus, and
hence will saturate rapidly. However, having only two 1/0
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Fig. 11. (a) A 4 * 3 * 2 GHC structure, (b) a 32 X 32 4-cube network.

ports per processor, the cost is very small as compared to the
GHC structures. .

The GHB structure consists of N buses with N = m, *
M,y * "+ % m % -+ % m, * m. A bus in the GHB structure
is denoted by an r-tuple (x,x,—; - x;* - xx;) for 0 < x; <
m; — 1 for 1 <i =<r. A processor will be denoted
G Xpm1 v 0 Xig yizdxio1 +  + xy), i.e., with x; replaced by a
2-tuple [y;z] for y;,,z; € {0,1,--+(m; — 1)}. This means
that the processor is connected to buses (x,x,_;° "
Xivr YiXi-1o 031 and (x, — 1o X ziXiog 00 Xy).
vi»2z €{0,1,+++,(m; — 1)} and the ith position can vary be-
tween 1 and r. The Hamming distance between a pair [ y;z]
and some v; is O if v, is equal to y; or z; or [ yw;] or [w;z] and
equals 1, otherwise. Similarly, Hamming distance between x;
and v; is 0 if x; = v, and equals 1 if x; # v;. The actual distance
between any two different processors = Hamming distance
between them +1.
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Fig. 12. A GHB structure with N = 3 * 2.
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The GHB structures have the following features:
1) Each processor has only two I/O ports.
2) The number of processors connected to a bus is

p=2(m~-1).
i=1
3) Total number of processors in the system.

i(mi— 1).

i=1

N
P 2
4) Two processors can differ in their addresses in all the
r-coordinates. Thus, the diameter of the structure = r + 1.
5) There are p bus disjoint paths between any two buses.

A bus disjoint path also corresponds to a node disjoint path.

6) There are d disjoint paths of equal distance d between any
two buses with a Hamming distance d.

7) A processor is disconnected if both the adjoining
buses fail. ‘

Internode Distance: Since the structure is symmetrical,
let us consider 0""! [01] as the source node. 0""! means
000 -up to (r — 1) terms.

Nodes differing by unit distance:

1) When nodes have addresses {w0} and {wl}, where
w is a set of (r — 1) terms 000 - - [Ox;]---0 for all
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I<sx,<(m-—-1Dand 2<i=<
nodes = 2 2, (m; — 1)

2) When the nodes are of the form {0""'[0x,]} or
{0 [1x1}, x, £ {2,3, - +(m; — 1)}. The number of such
nodes = 2(m; — 2). Hence, the total number of nodes with
distance 1

r. The number of such

N =22 (m; — 1) + 2(m; — 2).

i=2
When N=m", Ny =2(r — 1)(m — 1) + 2(m — 2) =
2rm — 2r — 2.

Nodes differing by distance d:

When N = m, * m,_, * - -+ * m,, it is extremely difficult
to derive closed form expressions for N,. Let us consider
N =m" with m; = m, 1 < i < r. There are several possi-
bilities as discussed below. o

1) Nodes of the form {w[0x;]} and {w[1x,]}, where w is a
r — 1 tuple differing from 0"~' in (d — 1) dimensions. For
each [Ox;] and [1x;] in the least significant digit (Isd), there
are (;2}) (m — 1)*"! number of nodes and there are (m — 1)
such [Ox] and (m — 2) such [1x] in the Isd. Hence, number of
nodes = (2m — 3) (Z}) (m — 1)1,

2) Nodes of the form {wO} or {wl}.

(a) When w contains one [Ox;] in the ith dimension for
2 < i < r. As aresult of [Ox;] in the ith dimension, the node
must differ in its address by (d — 1) places out of (r — 2)
dlmenswns There are (r — 1) values i can take and there
are (m — 1) different values for x;. Hence, the number of
nodes = 2(r — 1) () (m — 1)*'(m — 1).

(b) When w contains [ yz],y,z # 0 in the ith dimension.
There are (") such elements possible in one dimension and
for each [ yz] there are (;-3) (m — 1)*"2. Again, [yz] can oc-
cupy (r — 1) dimensions except Isd and the total number of
nodes = 2 (r — (" H (G2 (m — 1)*2

3) Nodes of the form {wx},x € {2,3, - (m — 1)}

(a) When w contains [Oy] in the ith dimension, for
each x in the Isd, there can be (m — 1) such [Oy] in a parti-
cular dimension. The number of nodes for each such
[0y] = (4-3) (m — 1)* % There are (r — 1) dimensions and
(m — 1) number of [Oy] in each dimension; number of nodes
foreachx = (r — 1)(m — 1) (23 (m — 1)*2. Again, there
can be (m — 2) such x in the Isd. Hence, the total number of
nodes = (m — 2)(r — D(m — DG (m — 1)¥72

.(b) When w contains [ yz],y,z # 0inthe ith dimension,
there can be (™;') such pairs in each dimension with each
having (5-3) (m — 1)*7 nodes. For (r — 1) such dimensions
and (m — 2) such x in the lsd the total number of
nodes = (m — 2)(r — 1) ("D 5D (m — 1),

4) Nodes of the form {w[yz]},y,z € {2,3,---(m — 1)}.
There are (";7) such pairs in the Isd. For each pair there will
be (1) (m — 1)* 2 nodes differing by distance d. Hence, the
total number of nodes = (";%) (523) (m — 1)%72,

The total number of nodes N, differing by a dlstance d
in the GHB structure will be the sum of all the nodes
in the above four possibilities. The maximum possible
distance = r + 1. The total number of nodes in GHB struc-
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ture with N = m”
P=1/2-N-r(m—1).

Hence, the average message distance is

d =2<,+21 dN,,)/N-r-(m— 1).

d=1

The average message traffic density in a bus in GHB
structure is

— N r
- 2 (m = 1)

N

ai (m; — 1)

and when N =m’,p=1/2+-d-r(m — 1).

p=

VII. CONCLUSION

Two types of hypercube structures, generalized hypercube
(GHC) and generalized hyperbus (GHB) have been presented
in this paper. The GHC structure has a low cost compared to
other hypercube structures. Because of its high connectivity,
the fault tolerance is quite good. It also has a low average
message distance and a low traffic density in the links. These
factors increase approximately as log N. In general, the per-
formance of GHC structure lies between that of a loop and a
completely connected structure. In a GHC design it is impos-
sible to have degree of a node less than log, N. The GHB
structures are obtained when a node in the GHC is replaced
by a bus and a link in GHC is replaced by a node. Hence,
traffic density on a bus in a GHB structure may be quite high.
However, the number of 1/O ports per processor is fixed at
two. A generalized spanning bus hypercube [8] can similarly
be obtained when each node is connected to ‘r’ buses, each
spanning a different dimension in the address space and m;
number of nodes sharing a bus in the ith direction. The nodes
will have identical addresses except in their ith coordinate.

The study provides clean design methodologies for a com-
puter network based on the desired diameter. It also reveals
many interesting properties of the hypercubes.
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